Biography

I’m a statistician born in São Paulo, Brazil, and graduated from the University of São Paulo (USP) in 2008. Between 2009 and 2010, I was a Master’s student at USP (Master’s dissertation). From 2010 to 2014, I was a PhD student at Carnegie Mellon University (CMU) (PhD thesis), USA. Currently, I’m at the Department of Statistics of the Federal University of São Carlos (UFSCar).

I’m interested in theory, methodology, applications, and foundations of statististics and machine learning.

Research groups:

drawing

drawing

In case you are looking for Rafael Stern, his site is here.

Interests

  • Machine Learning
  • High-dimensional Inference
  • Nonparametric Statistics
  • Bayesian Inference
  • Foundations of Statistics
  • Astrostatistics

Education

  • PhD in Statistics, 2014

    Carnegie Mellon University

  • Master in Statistics, 2010

    University of São Paulo

  • BSc in Statistics, 2009

    University of São Paulo

Recent Publications

Quickly discover relevant content by filtering publications.
(2020). Flexible distribution-free conditional predictive bands using density estimators. Proceedings of Machine Learning Research (AISTATS Track).

Preprint

(2020). Validation of Approximate Likelihood and Emulator Models for Computationally Intensive Simulations. Proceedings of Machine Learning Research (AISTATS Track).

Preprint

(2020). Conditional Density Estimation Tools in Python and R with Applications to Photometric Redshifts and Likelihood-Free Cosmological Inference. Astronomy and Computing.

Preprint

(2020). The NN-Stacking: Feature weighted linear stacking through neural networks. Neurocomputing.

Preprint

(2020). Combinando métodos de aprendizado supervisionado para a melhoria da previsão do redshift de galáxia. TEMA – Tendências em Matemática Aplicada e Computacional.

PDF

Lecture Notes

Teaching

Students

PhD

  • Afonso Fernandes Vaz – (current student)
  • Gilson Shimizu – (current student)
  • Marco Henrique de Almeida Inacio – (current student)

Master

  • Felipe Hernandez Bisca – (current student)
  • Deborah Bassi Stern – (current student)
  • Víctor Candido Reis – (current student)
  • Victor Coscrato – (2017-2018)
  • Rafael de Carvalho Ceregatti – A bayesian nonparametric approach for the two-sample problem (2016-2019, co-advisor)
  • Afonso Fernandes Vaz – Improved quantification under domain shift (2016-2018)
  • Marco Henrique de Almeida Inacio – Comparing two populations using Bayesian Fourier series density estimation (2016-2017)
  • Gretta Rossi Ferreira – Estimação de densidades condicionais com aplicações à astronomia (2015-2017)

Undergraduate

  • Mateus Borges Comito (CNPq) (current student)
  • Víctor Candido Reis (CNPq; FAPESP) (2018-2019)
  • Macela Musetti - Combining photometric redshift estimators (2018)
  • Daniel Simionato (CNPq) – Inferência Via Métodos Preditivos (2017-2018)
  • Andressa de Jesus Dantas – Understanding Zika patients (2017-2018)
  • João Dantas – Optimal strategies in pocker (2017-2018)
  • Victor Coscrato – Word2Vec vs Bag-of-Words (2017)
  • Rafael Catoia – Collective posterior: can the updating time change it? (2017)
  • Mauricio Najjar Da Silveira (CNPq) – Comparação não-paramétrica de grupos com base em estimação de densidades (2016-2017; co-advisor)
  • Ana Molina – Comparação entre métodos de construção de árvores filogenéticas (2016-2017)
  • Victor Coscrato (CNPq) – Testes de Hipóteses Agnósticos (2016-2017)
  • Douglas Raul de Freitas – Alguns aspectos sobre o bigdata na estatística (2016-2017)
  • Letícia Octaviano da Cruz (CNPq) – Monitoramento Online da Dengue (2015-2016)
  • Paula Ianishi – Técnicas de predição para dados desbalanceados aplicadas ao problema de classificação morfológica de galáxias (2015-2016)
  • Felipe Henrique Mosquetta Oliveira – Tratamento e Classificação de Dados do Twitter sobre Política e Clima (2015)
  • Bruno Roberto Guimarães – Classificação automática de resenhas sobre jogos na Google Play Store (2015)

Recent Posts

Recomendações para meus orientandos

Algumas recomendações para quem está começando a trabalhar comigo