Likelihood-Free Frequentist Inference: Confidence Sets with Correct Conditional Coverage


Many areas of science make extensive use of computer simulators that implicitly encode likelihood functions of complex systems. Classical statistical methods are poorly suited for these so-called likelihood-free inference (LFI) settings, particularly outside asymptotic and low-dimensional regimes. Although new machine learning methods, such as normalizing flows, have revolutionized the sample efficiency and capacity of LFI methods, it remains an open question whether they produce confidence sets with correct conditional coverage for small sample sizes. This paper unifies classical statistics with modern machine learning to present (i) a practical procedure for the Neyman construction of confidence sets with finite-sample guarantees of nominal coverage, and (ii) diagnostics that estimate conditional coverage over the entire parameter space. We refer to our framework as likelihood-free frequentist inference (LF2I). Any method that defines a test statistic, such as the likelihood ratio, can leverage the LF2I machinery to create valid confidence sets and diagnostics without costly Monte Carlo samples at fixed parameter settings. We study the power of two test statistics (ACORE and BFF), which, respectively, maximize versus integrate an odds function over the parameter space. Our paper discusses the benefits and challenges of LF2I, with a breakdown of the sources of errors in LF2I confidence sets.